Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Parameters to be Considered in the Simulation of Drug Release from Aspirin Crystals and their Microcapsules

Florence E Eichie , Roland S Okor

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Benin, Benin City, Nigeria;

For correspondence:-  Florence Eichie   Email: eichie@uniben.edu

Published: 23 December 2002

Citation: Eichie FE, Okor RS. Parameters to be Considered in the Simulation of Drug Release from Aspirin Crystals and their Microcapsules. Trop J Pharm Res 2002; 1(2):99-110 doi: 10.4314/tjpr.v1i2.7

© 2002 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose:  Drug  microparticles  may  be  microencapsulated  with  water-insoluble polymers  to obtain  controlled  release,  which  may  be  further  determined by  the particle distribution.  The purpose of this study  was  to determine  the  drug  release parameters  needed  for  the theoretical prediction of the release profiles of single aspirin crystals and their microcapsules.
Method:  Four  single  crystals  of  aspirin of  varied  weight  and orthorhombic  in  shape or  their microcapsules  also of  varied  weights  were  randomly selected  for  the  study.  The microcapsules  were  walled  with an  acrylatemethacrylate  copolymer (wall  thickness,  11  ì m ). The  following parameters  were evaluated: the order  of  release, the dissolution  rate  constant, k  (crystals), the  diffusion coefficient,  D (microcapsules), the maximum release m¥ and time to attain it t ¥.  These parameters were in turn used to simulate the release profiles of hypothetical single particles of a wide range size distribution, 0.3 – 1.4 mm at 0.1mm intervals.
Results:  The empirical  single  crystals  exhibited an  initial  zero order (93%;  dissolution constant  = 4.4  min
-1 )  followed by  a first  order release (6%;  dissolution constant  = 0.38  min -1). Maximum release from each of the crystals was 99% of the initial particle weight; thus m¥ was a constant fraction of the initial  particle weight.  A zero order release consistent  with a Fickian diffusion  model  was  displayed by  the  single  microcapsules  (diffusion  coefficient,  5.4x10 -4 mm 2 min -1 ).  At  same particle  weight the  release parameters  m¥ , t ¥, and  the  slopes  of the  rate order plots compared favourably with the theoretical data.
Conclusion:  The study indicates that the empirical  release data on a few single particles can be used  to predict the  release profiles  of  single particles  of  a  wide  range of  size distribution. This finding may be exploited in the prediction of drug release from polydisperse systems.

Keywords: Aspirin crystals, drug release, simulation, microcapsules

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates